The quantitative difference between countable compactness and compactness

C. Angosto and B. Cascales

Universidad de Murcia

10th Prague topological symposium, Czech Republic. August 13 - 19, 2006

The papers

B. Cascales, W. Marciszesky, and M. Raja, Distance to spaces of continuous functions, Topology Appl. 153 (2006), 2303-2319.

C. Angosto and B. Cascales, The quantitative difference between countable compactness and compactness, Submitted, 2006.

., Distances to spaces of Baire one functions, Work in progress, 2006.

1 The starting point...our goals

- 1 The starting point...our goals
- 2 The results
 - C(K) spaces...a taste for simple things
 - C(X) spaces... countably K-determined spaces (Lindelöf Σ)
 - Applications...to Banach spaces
 - $B_1(X)$ spaces... Polish spaces and related ones

- 1 The starting point...our goals
- 2 The results
 - C(K) spaces...a taste for simple things
 - C(X) spaces... countably K-determined spaces (Lindelöf Σ)
 - Applications...to Banach spaces
 - $B_1(X)$ spaces... Polish spaces and related ones
- 3 References

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem..
 Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. Convexity and w*-compactness in Banach spaces.
 Math. Ann., 2005.

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. N Main result
- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. ($\widehat{\mathrm{d}}(\overline{\mathrm{co}(H)}, E) \leq 2\widehat{\mathrm{d}}(\overline{H}, E),$ Math

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. Main result
- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)},E) \leq 2\widehat{\mathsf{d}}(\overline{H},E),$$

- A. S. (Convex Math
- closures are weak*-closures taken in the bidual E**;

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. Main result
- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then

$$\widehat{\mathrm{d}}(\overline{\mathrm{co}(H)},E)\leq 2\widehat{\mathrm{d}}(\overline{H},E),$$

- A. S. (Conve) Math.
- closures are weak*-closures taken in the bidual E**;
- $\bullet \ \widehat{\mathsf{d}}(A,E) := \sup \{ d(a,E) : a \in A \} \text{ for } A \subset E^{**};$

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. N Main result
- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)},E) \leq 2\widehat{\mathsf{d}}(\overline{H},E),$$

- A. S. (Conve) Math.
- closures are weak*-closures taken in the bidual E^{**} ;
- $\bullet \ \dot{\mathsf{d}}(A,E) := \sup\{d(a,E) : a \in A\} \text{ for } A \subset E^{**};$
- $\widehat{\mathrm{d}}(A,E)=0$ iff $A\subset E$. Hence the inequality implies Krein's theorem (if H is relatively weakly compact then $\overline{\mathrm{co}(H)}$ is weakly compact.)

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem..
 Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. Convexity and w*-compactness in Banach spaces.
 Math. Ann., 2005.

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem..
 Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.

An exte Main result

Rev. M

• A. S. G Convexi Math. / • Let E be a Banach space and let $H \subset E^{**}$ be a bounded subset of E^{**} . Then

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)},E) \leq 5\widehat{\mathsf{d}}(\overline{H},E),$$

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem..
 Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.

An exte Main result

Rev. M

• A. S. G Convexi Math. A • Let E be a Banach space and let $H \subset E^{**}$ be a bounded subset of E^{**} . Then

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)},E) \leq 5\widehat{\mathsf{d}}(\overline{H},E),$$

Some of the constant involved are sharp.

...goals

• To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;

 $\hat{d} \leq \hat{d} \leq 5\hat{d}$

...goals

• To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;

...goals

- To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;
- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

 $\hat{d} < \hat{d} < M\hat{d}$

...goals

- To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;
- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

 $\hat{d} < \hat{d} < M\hat{d}$

...goals

- To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;
- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

• new reading of the *classical*;

 $\hat{d} < \hat{d} < M\hat{d}$

...goals

- To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;
- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the classical;
- for C(X) we use double limits used by Grothendieck;

 $\hat{d} < \hat{d} < M\hat{d}$

...goals

- To take the results where (I think!) they belong i.e. to the context of C(K) and \mathbb{R}^K spaces endowed with τ_p ;
- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the classical;
- for C(X) we use *double limits* used by Grothendieck:
- for B₁(X) we use the notions of fragmentability and σ-fragmentability of functions.

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \leq \widehat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$$

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \leq \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \leq \widehat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

$$\gamma(H) := \sup\{|\lim_n \lim_m h_m(x_n) - \lim_m \lim_n h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},\$$

assuming the involved limits exist.

Quantitative Grothendieck charact. of au_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \leq \widehat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

 $\gamma(H) := \sup\{|\lim_n \lim_m h_m(x_n) - \lim_m \lim_n h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},$ assuming the involved limits exist.

If H is relatively countably compact in C(K) then ck(H) = 0

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{\text{(a)}}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{\text{(b)}}{\leq} \gamma(H) \overset{\text{(c)}}{\leq} 2\mathsf{ck}(H).$$

<u>Theorem</u>

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{\left(a\right)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{\left(b\right)}{\leq} \gamma(H) \overset{\left(c\right)}{\leq} 2 \mathsf{ck}(H).$$

a) is obvious.

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \overset{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2\operatorname{ck}(H).$$

- a) is obvious.
- in $\gamma(H)$ replace sequences by nets. (b)

<u>Theorem</u>

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\operatorname{ck}(H) \overset{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2\operatorname{ck}(H).$$

a) is obvious.

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
- $\bullet \quad \mathsf{Pick} \ f \in \overline{H}^{\mathbb{R}^K} \ \ \mathsf{and} \ \mathsf{fix} \ x \in K.$
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

• Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^K .

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_B) → f in R^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

<u>Theorem</u>

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^K .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^K .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

• Hence $\operatorname{osc}^*(f,x) = \lim_{\alpha} |f(x_{\alpha}) - f(x)| = |z - f(x)| \le \gamma(H)$;

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_B) → f in R^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

- Hence $\operatorname{osc}^*(f,x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H)$;
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;

<u>Theorem</u>

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \overset{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \overset{(b)}{\leq} \gamma(H) \overset{(c)}{\leq} 2 \mathsf{ck}(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_B) → f in R^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

- Hence osc* (f,x) = lim_α |f(x_α) f(x)| = |z f(x)| ≤ γ(H);
- In particular $\operatorname{osc}(f,x) \leq 2\gamma(H)$ for every $x \in K$;
- $d(f,C(K))) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f,x) \leq \gamma(H).$

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$ck(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2ck(H).$$

(a) is obvious.

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_B) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

- Hence $\operatorname{osc}^*(f,x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H)$;
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$ck(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2ck(H).$$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_B) → f in R^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

- Hence $\operatorname{osc}^*(f,x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H)$;
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

<u>Theorem</u>

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$ck(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2ck(H).$$

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

• Assume (we can!)
$$f(x_{\alpha}) \rightarrow z$$
 in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

- Hence $\operatorname{osc}^*(f,x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H)$;
- In particular $\operatorname{osc}(f,x) \leq 2\gamma(H)$ for every $x \in K$;
- $d(f,C(K))) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f,x) \leq \gamma(H).$

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

1 Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n)$, $\lim_m \lim_n f_m(x_n)$.

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.

$$\alpha > \mathsf{ck}(H) = \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K)) \ge d(\bigcap_{m \in \mathbb{N}} \overline{\{f_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n)$, $\lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$

```
C(K) spaces...a taste for simple things C(X) spaces...countably K-determined spaces (Lindelöf \Sigma) Applications...to Banach spaces B_1(X) spaces...Polish spaces and related ones
```

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.

```
C(K) spaces...a taste for simple things C(X) spaces...countably K-determined spaces (Lindelöf \Sigma) Applications...to Banach spaces B_1(X) spaces...Polish spaces and related ones
```

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.
- **1** Produce a subsequence $(x_{n_k})_k$ of $(x_n)_n$ with $\lim_k f'(x_{n_k}) = f'(x)$.

```
C(K) spaces...a taste for simple things C(X) spaces...countably K-determined spaces (Lindelöf \Sigma) Applications...to Banach spaces B_1(X) spaces...Polish spaces and related ones
```

$$\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.
- **1** Produce a subsequence $(x_{n_k})_k$ of $(x_n)_n$ with $\lim_k f'(x_{n_k}) = f'(x)$.
- $\exists \lim_n \lim_m f_m(x_n) = \lim_n f(x_n) = \lim_k f(x_{n_k}).$

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n)$, $\lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.
- **o** Produce a subsequence $(x_{n_k})_k$ of $(x_n)_n$ with $\lim_k f'(x_{n_k}) = f'(x)$.
- $\exists \lim_n \lim_m f_m(x_n) = \lim_n f(x_n) = \lim_k f(x_{n_k}).$
- $|\lim_k f(x_{n_k}) f(x)| \le |\lim_k f(x_{n_k}) \lim_k f'(x_{n_k})| + |f'(x) f(x)| \le 2\alpha.$

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **3** fix now $f' \in C(K)$ such that $\sup_{x \in K} |f(x) f'(x)| < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.
- **o** Produce a subsequence $(x_{n_k})_k$ of $(x_n)_n$ with $\lim_k f'(x_{n_k}) = f'(x)$.
- $\exists \lim_n \lim_m f_m(x_n) = \lim_n f(x_n) = \lim_k f(x_{n_k}).$
- $|\lim_k f(x_{n_k}) f(x)| \le |\lim_k f(x_{n_k}) \lim_k f'(x_{n_k})| + |f'(x) f(x)| \le 2\alpha.$
- $\exists \lim_{m} \lim_{n} f_{m}(x_{n}) = \lim_{m} f_{m}(x) = f(x).$

```
C(K) spaces...a taste for simple things C(X) spaces...countably K-determined spaces (Lindelöf \Sigma) Applications...to Banach spaces B_1(X) spaces...Polish spaces and related ones
```

$$\gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$$

- **1** Take $(f_m)_m$ in H, $(x_n)_n$ in K with $\exists \lim_n \lim_m f_m(x_n), \lim_m \lim_n f_m(x_n)$.
- ② If $\alpha > \operatorname{ck}(H)$, $(f_m)_m$ has a τ_p -cluster point $f \in \mathbb{R}^K$ with $d(f, C(K)) < \alpha$.
- **3** fix now $f' \in C(K)$ such that $\sup_{x \in K} |f(x) f'(x)| < \alpha$.
- **4** pick $x \in K$ a cluster point of $(x_n)_n$
- **3** Since f' and each f_m are continuous f'(x) and $f_m(x)$ are, respectively, cluster points in \mathbb{R} of $(f'(x_n))_n$ and $(f_m(x_n))_n$.
- **o** Produce a subsequence $(x_{n_k})_k$ of $(x_n)_n$ with $\lim_k f'(x_{n_k}) = f'(x)$.
- $\exists \lim_n \lim_m f_m(x_n) = \lim_n f(x_n) = \lim_k f(x_{n_k}).$
- $|\lim_k f(x_{n_k}) f(x)| \le |\lim_k f(x_{n_k}) \lim_k f'(x_{n_k})| + |f'(x) f(x)| \le 2\alpha.$
- $\exists \lim_{m} \lim_{n} f_{m}(x_{n}) = \lim_{m} f_{m}(x) = f(x).$
- $|\lim_n \lim_m f_m(x_n) \lim_m \lim_n f_m(x_n)| = |\lim_n \lim_m f_m(x_n) f(x)| = |\lim_k f(x_{n_k}) f(x)| \le 2\alpha, \text{ and (c) is proved.}$

 $B_1(X)$ spaces...Polish spaces and related ones

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

$$\gamma(H) = \gamma(\operatorname{co}(H)),$$

and as a consequence we obtain for $H \subset C(K)$ that

$$\hat{\mathsf{d}}(\overline{\mathsf{co}(H)}^{\mathbb{R}^K}), C(K)) \le 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^K$

$$\hat{d}(\overline{co(H)}^{\mathbb{R}^K}), C(K)) \le 5\hat{d}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (2)

 $B_1(X)$ spaces...Polish spaces and related ones

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

$$\gamma(H) = \gamma(\operatorname{co}(H)),$$

and as a consequence we obtain for $H \subset C(K)$ that

$$\hat{\mathsf{d}}(\overline{\mathsf{co}(H)}^{\mathbb{R}^K}), C(K)) \le 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^K$

$$\hat{d}(\overline{co(H)}^{\mathbb{R}^K}), C(K)) \le 5\hat{d}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (2)

$$\mathbf{0} \ \hat{\mathsf{d}}(\overline{\mathsf{co}(H)}^{\mathbb{R}^K}), C(K)) \leq \gamma(\mathsf{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K))$$

 $B_1(X)$ spaces...Polish spaces and related ones

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

$$\gamma(H) = \gamma(\operatorname{co}(H)),$$

and as a consequence we obtain for $H \subset C(K)$ that

$$\hat{\mathsf{d}}(\overline{\mathsf{co}(H)}^{\mathbb{R}^K}), C(K)) \le 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^K$

$$\hat{\mathsf{d}}(\overline{\mathsf{co}(H)}^{\mathbb{R}^K}), C(K)) \le 5\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)).$$
 (2)

- $\hat{\mathsf{d}}(\overline{\mathrm{co}(H)}^{\mathbb{R}^K}), C(K)) \leq \gamma(\mathrm{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K))$
- ② When $H \subset \mathbb{R}^K$, we approximate H by some set in C(K), then use (1) and 5 appears as a simple

$$5 = 2 \times 2 + 1$$
.

C(K) spaces...a taste for simple things

C(X) spaces...countably K-determined spaces (Lindelöf Σ) Applications...to Banach spaces

 $B_1(X)$ spaces...Polish spaces and related ones

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \overset{\text{(a)}}{\leq} \hat{d}(\overline{H}^{Z^X}, C(X, Z)) \overset{\text{(b)}}{\leq} 3 \mathsf{ck}(H) + 2 \hat{d}(H, C(X, Z)) \overset{\text{(c)}}{\leq} 5 \mathsf{ck}(H).$$

- C(K) spaces...a taste for simple things
- C(X) spaces... countably K-determined spaces (Lindelöf Σ)
 Applications... to Banach spaces
- $B_1(X)$ spaces...Polish spaces and related ones

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\mathsf{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\operatorname{ck}(H) \stackrel{\text{(a)}}{\leq} \hat{d}(\overline{H}^{ZX}, C(X, Z)) \stackrel{\text{(b)}}{\leq} 3\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(c)}}{\leq} 5\operatorname{ck}(H).$$

C(K) spaces ... a taste for simple things

C(X) spaces...countably K-determined spaces (Lindelöf Σ) Applications...to Banach spaces

 $B_1(X)$ spaces... Polish spaces and related ones

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X,τ_p) . Then, for any $f\in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{ZX}, C(X, Z)) \stackrel{(b)}{\leq} 3\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5\mathsf{ck}(H).$$

For the particular case ck(H) = 0 we obtain all known results about compactness in $C_p(X)$ spaces.

 $B_1(X)$ spaces...Polish spaces and related ones

The technicalities for C(X)

Definition

Let (Z,d) be a metric space, X a set and $\varepsilon \geq 0$.

(i) We say that a sequence $(f_m)_m$ in Z^X ε -interchanges limits with a sequence $(x_n)_n$ in X if whenever the limits below exist we have

$$d(\lim_{n}\lim_{m}f_{m}(x_{n}),\lim_{m}\lim_{n}f_{m}(x_{n}))\leq\varepsilon.$$

(ii) We say that a subset H of Z^X ε -interchanges limits with a subset A of X, if each sequence in H ε -interchanges limits with each sequence in A.

X topological space, (Z,d) a separable metric space and $H\subset (Z^X, au_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

 $\mathcal{B}_1(X)$ spaces...Polish spaces and related ones

X topological space, (Z,d) a separable metric space and $H \subset (Z^X, \tau_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- (i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\{A_{\alpha} : \alpha \in \Sigma\}$ of non-void subsets of the set X such that $X = \bigcup \{A_{\alpha} : \alpha \in \Sigma\};$
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha|m \}.$

Then for any $f \in \overline{H}^{ZX}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

 $B_1(X)$ spaces...Polish spaces and related ones

X topological space, (Z,d) a separable metric space and $H\subset (Z^X, au_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {A_α : α ∈ Σ} of non-void subsets of the set X such that X = ∪{A_α : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}.$

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

 $B_1(X)$ spaces...Polish spaces and related ones

X topological space, (Z,d) a separable metric space and $H\subset (Z^X, au_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {A_α : α ∈ Σ} of non-void subsets of the set X such that X = ∪{A_α : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}$.

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Proof.-

1 Let $T: \Sigma \to 2^X$ be the *usco* map, $\Sigma \subset \mathbb{N}^\mathbb{N}$, such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$;

X topological space, (Z,d) a separable metric space and $H\subset (Z^X, au_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {A_α : α ∈ Σ} of non-void subsets of the set X such that X = ∪{A_α : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}$.

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{ZX}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Proof.-

- ① Let $T: \Sigma \to 2^X$ be the *usco* map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$;
- 2 Take $A_{\alpha} := T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.

X topological space, (Z,d) a separable metric space and $H \subset (Z^X, \tau_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {Aα : α ∈ Σ} of non-void subsets of the set X such that X = ∪{Aα : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}$.

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2 \operatorname{ck}(H) + 2 \hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4 \operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Proof.-

- ① Let $T: \Sigma \to 2^X$ be the *usco* map, $\Sigma \subset \mathbb{N}^\mathbb{N}$, such that $\{ \{ T(\alpha) : \alpha \in \Sigma \} = X \}$
- **2** Take $A_{\alpha} := T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
- **3** For every $\alpha \in \Sigma$, every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, lies in a compact subset of X.

C(K) spaces...a taste for simple things C(X) spaces...countably K-determined spaces (Lindelöf Σ)

C(X) spaces...countably K-determined spaces (Lindelof Σ) Applications...to Banach spaces

 $B_1(X)$ spaces...Polish spaces and related ones

X topological space, (Z,d) a separable metric space and $H\subset (Z^X,\tau_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {Aα : α ∈ Σ} of non-void subsets of the set X such that X = ∪{Aα : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}$.

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2 \operatorname{ck}(H) + 2 \hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4 \operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Proof.-

- ① Let $T: \Sigma \to 2^X$ be the *usco* map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$;
- **2** Take $A_{\alpha} := T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
- ③ For every $\alpha ∈ \Sigma$, every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m ∈ \mathbb{N}$, lies in a compact subset of X.
- 4 Apply Lemma 1 to obtain that for

$$\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$$

(ii) in Lemma 2 is satisfied.

 $B_1(X)$ spaces...Polish spaces and related ones

X topological space, (Z,d) a separable metric space and $H\subset (Z^X, au_p)$ relatively compact.

Lemma 1

If we define $\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$, then H 2ε -interchanges limits with relatively countably compact subsets of X.

Lemma 2

- there is Σ ⊂ N^N and a family {Aα : α ∈ Σ} of non-void subsets of the set X such that X = ∪{Aα : α ∈ Σ};
- (ii) for every $\alpha = (a_1, a_2, \dots) \in \Sigma$ the set H ε -interchanges limits in Z with every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m \in \mathbb{N}$, where $C_{\alpha|m} = \bigcup \{A_\beta : \beta \in \Sigma \text{ and } \beta | m = \alpha | m \}$.

Then for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in H such that

$$\sup_{x\in X}d(g(x),f(x))\leq \varepsilon$$

for any cluster point g of $(f_n)_{n\in\mathbb{N}}$ in Z^X .

Theorem

Let X be a countably K-determined space. Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Proof.-

- ① Let $T: \Sigma \to 2^X$ be the *usco* map, $\Sigma \subset \mathbb{N}^\mathbb{N}$, such that $\{ \{ T(\alpha) : \alpha \in \Sigma \} = X \}$
- **2** Take $A_{\alpha} := T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
- ③ For every $\alpha ∈ \Sigma$, every sequence $(x_n)_n$ in X that is eventually in each set $C_{\alpha|m}$, $m ∈ \mathbb{N}$, lies in a compact subset of X.
- 4 Apply Lemma 1 to obtain that for

$$\varepsilon := \operatorname{ck}(H) + \hat{d}(H, C(X, Z))$$

- (ii) in Lemma 2 is satisfied.
- 6 Lemma 2 finishes the proof.

C(K) spaces...a taste for simple things

C(X) spaces... countably K-determined spaces (Lindelöf Σ)
Applications... to Banach spaces

 $B_1(X)$ spaces...Polish spaces and related ones

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X,τ_p) . Then, for any $f\in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in X} d(g(x), f(x)) \stackrel{\text{(a)}}{\leq} 2\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{\text{(b)}}{\leq} 4\mathsf{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{ZX}, C(X, Z)) \stackrel{(b)}{\leq} 3\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5\mathsf{ck}(H).$$

For the particular case ck(H) = 0 we obtain angelicity of $C_p(X)$ (Orihuela).

If K is a compact convex subset of a l.c.s., $\mathscr{A}(K)$ is the space of affine functions defined on K, and $\mathscr{A}^{C}(K) = C(K) \cap \mathscr{A}(K)$.

Theorem

Let K be a compact convex subset of a l.c.s. Then for any bounded function f in $\mathscr{A}(K)$ we have

$$d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$$

Corollary

Let E be a Banach space and let B_{E^*} be the closed unit ball in the dual E^* endowed with the w^* -topology. Let $i: E \to E^{**}$ and $j: E^{**} \to \ell_{\infty}(B_{E^*})$ be the canonical embedding. Then, for every $x^{**} \in E^{**}$ we have:

$$d(x^{**}, i(E)) = d(j(x^{**}), C(B_{E^*})).$$

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

$$\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_{\varepsilon} \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},$$

$$\gamma(H) := \sup\{|\lim_n \lim_m f_m(x_n) - \lim_m \lim_n f_m(x_n)| : (f_m) \subset B_{E^*}, (x_n) \subset H\},$$

assuming the involved limits exist,

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{w^*}, E),$$

$$\mathsf{k}(H) := \hat{d}(\overline{H}^{w^*}, E) = \sup_{x^{**} \in \overline{H}^{w^*}} d(x^{**}, E),$$

where the w^* -closures are taken in E^{**} and the distance d is the usual inf distance for sets associated to the natural norm in E^{**} .

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$ck(H) \le k(H) \le \gamma(H) \le 2ck(H) \le 2k(H) \le 2\omega(H),$$

$$\gamma(H) = \gamma(\operatorname{co}(H))$$
 and $\omega(H) = \omega(\operatorname{co}(H))$.

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$||x^{**} - y^{**}|| \le \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$ and $\omega(H)$ is zero.

Remark

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From $k(co(H)) \le 2k(H)$ straightforwardly follows Krein-smulyan theorem.

Corson property implies $k(\cdot) = ck(\cdot)$

Theorem

If E is a Banach space with Corson property \mathscr{C} , then for every bounded set $H \subset E$ we have ck(H) = k(H).

Problem 8 1

Do we have the equality $ck(\cdot) = k(\cdot)$ for every Banach space?

Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K). Let us define

$$\gamma_K(H) := \sup\{|\lim_n \lim_m f_m(x_n) - \lim_m \lim_n f_m(x_n)| : (f_m) \subset H, (x_n) \subset K\},$$

assuming the involved limits exist. Then we have

$$\gamma_K(H) \leq \gamma(H) \leq 2\gamma_K(H)$$
.

Theorem (Gantmacher)

Let E and F be Banach spaces, $T: E \to F$ an operator and $T^*: F^* \to E^*$ its adjoint. Then

$$\gamma(T(B_E)) \leq \gamma(T^*(B_{F^*})) \leq 2\gamma(T(B_E)).$$

Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence $(T_n)_n$ of operators $T_n: E \to c_0$ such that

$$\omega(T_n^*(B_{\ell^1})) = 1 \qquad \text{and} \qquad \omega(T_n^{**}(B_E^{**})) \le w(T_n(B_E)) \le \frac{1}{n}.$$

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator $T : E \to F$ we have $m\omega(T(B_E)) < \omega(T^*(B_{E^*})) < M\omega(T(B_E)).$

Corollary

 γ and ω are not equivalent measures of weak noncompactness, namely there is no N>0 such that for any Banach space and any bounded set $H\subset E$ we have

$$\omega(H) \leq N\gamma(H)$$
.

We use an index of σ -fragmentability.

We use an index of σ -fragmentability.

If X topological space, (Z,d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

• f is ε -fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;

We use an index of σ -fragmentability.

If X topological space, (Z,d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

- f is ε -fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;
- ② f is $\varepsilon \sigma$ -fragmented by *closed sets* if there is countable family of closed subsets $(X_n)_n$ that covers X such that $f|_{X_n}$ is ε -fragmented for every $n \in \mathbb{N}$.

Indexes of fragmentability and σ -fragmentability

Definition

If X topological space, (Z,d) a metric and $f \in Z^X$. We define:

 σ -frag_c $(f) := \inf\{\varepsilon > 0 : f \text{ is } \varepsilon - \sigma$ -fragmented by closed sets $\}$

Theorem

If X is a metric space, E a Banach space and $f \in E^X$ then

$$\frac{1}{2}\sigma$$
-frag_c $(f) \le d(f, B_1(X, E)) \le \sigma$ -frag_c (f) .

In the particular case $E = \mathbb{R}$ we precisely have

$$d(f, B_1(X)) = \frac{1}{2} \sigma$$
-frag_c (f) .

References

K. Astala and H. O. Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367–375. MR MR1027789 (91b:47016)

J. Bourgain, D. H. Fremlin, and M. Talagrand, *Pointwise compact sets of Baire-measurable functions*, Amer. J. Math. **100** (1978), no. 4, 845–886, MR 80b:54017

A. Grothendieck, *Critères de compacité dans les espaces fonctionnels généraux*, Amer. J. Math. **74** (1952), 168–186. MR 13,857e

J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera, σ -fragmentability of multivalued maps and selection theorems. J. Funct. Anal. 117 (1993), no. 2, 243–273, MR 94m:46023

J. Orihuela, *Pointwise compactness in spaces of continuous functions*, J. London Math. Soc. (2) **36** (1987), no. 1, 143–152. MR 88f:46058

M. Talagrand, Espaces de Banach faiblement \mathscr{K} -analytiques, Ann. of Math. (2) 110 (1979), no. 3, 407–438. MR 81a:46021

Katetov theorem (X normal)

 f_1 u. s. concave

Hahn