The quantitative difference between countable compactness and compactness

C. Angosto and B. Cascales

Universidad de Murcia

10th Prague topological symposium, Czech Republic. August 13-19, 2006

The papers

R B. Cascales, W. Marciszesky, and M. Raja, Distance to spaces of continuous functions, Topology Appl. 153 (2006), 2303-2319.
围 C. Angosto and B. Cascales, The quantitative difference between countable compactness and compactness, Submitted, 2006.

图 \qquad Distances to spaces of Baire one functions, Work in progress, 2006.
(1) The starting point... our goals
(1) The starting point... our goals
(2) The results

- $C(K)$ spaces. . . a taste for simple things
- $C(X)$ spaces. . . countably K-determined spaces (Lindelöf Σ)
- Applications. . . to Banach spaces
- $B_{1}(X)$ spaces. . Polish spaces and related ones
(1) The starting point... our goals
(2) The results
- $C(K)$ spaces. . . a taste for simple things
- $C(X)$ spaces. . . countably K-determined spaces (Lindelöf Σ)
- Applications. . . to Banach spaces
- $B_{1}(X)$ spaces. . Polish spaces and related ones
(3) References

The starting point...

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An extension of Krein-Šmulian theorem.
Rev. Mat. Iberoamericana 22 (2005), no. 1, 93-110.

- A. S. Granero, P. Hájek, and V. Montesinos Santalucía.

Convexity and w^{*}-compactness in Banach spaces.
Math. Ann., 2005.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem.
Rev. Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conve)
Math.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem.
Rev. Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. C

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conve)
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem.
Rev. Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conve)
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;
- $\widehat{\mathrm{d}}(A, E):=\sup \{d(a, E): a \in A\}$ for $A \subset E^{* *}$;

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem.
Rev. NMain result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. C

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conve)
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;
- $\widehat{\mathrm{d}}(A, E):=\sup \{d(a, E): a \in A\}$ for $A \subset E^{* *}$;
- $\widehat{\mathrm{d}}(A, E)=0$ iff $A \subset E$. Hence the inequality implies Krein's theorem (if H is relatively weakly compact then $\overline{\mathrm{co}(H)}$ is weakly compact.)

The starting point...

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An extension of Krein-Šmulian theorem.
Rev. Mat. Iberoamericana 22 (2005), no. 1, 93-110.

- A. S. Granero, P. Hájek, and V. Montesinos Santalucía.

Convexity and w^{*}-compactness in Banach spaces.
Math. Ann., 2005.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An exte Main result

Rev. M

- Let E be a Banach space and let $H \subset E^{* *}$ be a
- A. S. G

Convex
Math. , bounded subset of $E^{* *}$. Then

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 5 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An exte Main result Rev. M

- A. S. G

Convex
Math. ,

- Let E be a Banach space and let $H \subset E^{* *}$ be a bounded subset of $E^{* *}$. Then

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 5 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

- Some of the constant involved are sharp.

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};

...our goal

..goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.

...our goal

..goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.

tools

- new reading of the classical;

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.

tools

- new reading of the classical;
- for $C(X)$ we use double limits used by Grothendieck;

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.
tools
- new reading of the classical;
- for $C(X)$ we use double limits used by Grothendieck;
- for $B_{1}(X)$ we use the notions of fragmentability and σ-fragmentability of functions.

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) .
$$

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\begin{aligned}
& \mathrm{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) . \\
& \operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{\mathbb{R}^{K}}, C(K)\right)
\end{aligned}
$$

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) .
$$

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{\mathbb{R}^{K}}, C(K)\right)
$$

$\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} h_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} h_{m}\left(x_{n}\right)\right|:\left(h_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}$,
assuming the involved limits exist.

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{\kappa}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) .
$$

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{\mathbb{R}^{K}}, C(K)\right)
$$

$\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} h_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} h_{m}\left(x_{n}\right)\right|:\left(h_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}$, assuming the involved limits exist.

If H is relatively countably compact in $C(K)$ then $\operatorname{ck}(H)=0$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.

$C(K)$ spaces. . . a taste for simple things
 $C(X)$ spaces. . . countably K-determined spaces (Lindelöf Σ) Applications. . . to Banach spaces
 $B_{1}(X)$ spaces. . . Polish spaces and related ones

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}

$C(K)$ spaces. . . a taste for simple things
 $C(X)$ spaces. . . countably K-determined spaces (Lindelöf Σ) Applications. . . to Banach spaces

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.

- in $\gamma(H)$ replace sequences by nets.
(b)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

The quantitative difference between NK and K

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.
(b)

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.

- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.
(b)

- in $\gamma(H)$ replace sequences by nets.
)
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.

- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

(a) is obvious.
(b)

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.

- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

The quantitative difference between NK and K

$$
\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H) .
$$

$$
\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.

$$
\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2. If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.

$$
\alpha>\operatorname{ck}(H)=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}} \overline{\left\{h_{n}: n>m\right\}} \overline{\mathbb{R}}^{\mathbb{R}^{K}}, C(K)\right) \geq d\left(\bigcap_{m \in \mathbb{N}} \overline{\left\{f_{n}: n>m\right\}} \mathbb{R}^{\mathbb{R}^{K}}, C(K)\right)
$$

C. Angosto and B. Cascales

The quantitative difference between NK and K

$$
\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H)
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.

$$
\gamma(H) \stackrel{(c)}{\leq} 2 \operatorname{ck}(H)
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(3) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(9) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(3) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(0) Produce a subsequence $\left(x_{n_{k}}\right)_{k}$ of $\left(x_{n}\right)_{n}$ with $\lim _{k} f^{\prime}\left(x_{n_{k}}\right)=f^{\prime}(x)$.
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(4) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(6) Produce a subsequence $\left(x_{n_{k}}\right)_{k}$ of $\left(x_{n}\right)_{n}$ with $\lim _{k} f^{\prime}\left(x_{n_{k}}\right)=f^{\prime}(x)$.
(7) $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right)=\lim _{n} f\left(x_{n}\right)=\lim _{k} f\left(x_{n_{k}}\right)$.
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(4) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(6) Produce a subsequence $\left(x_{n_{k}}\right)_{k}$ of $\left(x_{n}\right)_{n}$ with $\lim _{k} f^{\prime}\left(x_{n_{k}}\right)=f^{\prime}(x)$.
(7) $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right)=\lim _{n} f\left(x_{n}\right)=\lim _{k} f\left(x_{n_{k}}\right)$.
(8) $\left|\lim _{k} f\left(x_{n_{k}}\right)-f(x)\right| \leq\left|\lim _{k} f\left(x_{n_{k}}\right)-\lim _{k} f^{\prime}\left(x_{n_{k}}\right)\right|+\left|f^{\prime}(x)-f(x)\right| \leq 2 \alpha$.
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(4) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(6) Produce a subsequence $\left(x_{n_{k}}\right)_{k}$ of $\left(x_{n}\right)_{n}$ with $\lim _{k} f^{\prime}\left(x_{n_{k}}\right)=f^{\prime}(x)$.
(7) $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right)=\lim _{n} f\left(x_{n}\right)=\lim _{k} f\left(x_{n_{k}}\right)$.
(8) $\left|\lim _{k} f\left(x_{n_{k}}\right)-f(x)\right| \leq\left|\lim _{k} f\left(x_{n_{k}}\right)-\lim _{k} f^{\prime}\left(x_{n_{k}}\right)\right|+\left|f^{\prime}(x)-f(x)\right| \leq 2 \alpha$.
(0) $\exists \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)=\lim _{m} f_{m}(x)=f(x)$.
(c)

$$
\gamma(H) \leq 2 \operatorname{ck}(H) .
$$

(1) Take $\left(f_{m}\right)_{m}$ in $H,\left(x_{n}\right)_{n}$ in K with $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)$.
(2) If $\alpha>\operatorname{ck}(H),\left(f_{m}\right)_{m}$ has a τ_{p}-cluster point $f \in \mathbb{R}^{K}$ with $d(f, C(K))<\alpha$.
(3) fix now $f^{\prime} \in C(K)$ such that $\sup _{x \in K}\left|f(x)-f^{\prime}(x)\right|<\alpha$.
(4) pick $x \in K$ a cluster point of $\left(x_{n}\right)_{n}$
(5) Since f^{\prime} and each f_{m} are continuous $f^{\prime}(x)$ and $f_{m}(x)$ are, respectively, cluster points in \mathbb{R} of $\left(f^{\prime}\left(x_{n}\right)\right)_{n}$ and $\left(f_{m}\left(x_{n}\right)\right)_{n}$.
(6) Produce a subsequence $\left(x_{n_{k}}\right)_{k}$ of $\left(x_{n}\right)_{n}$ with $\lim _{k} f^{\prime}\left(x_{n_{k}}\right)=f^{\prime}(x)$.
(7) $\exists \lim _{n} \lim _{m} f_{m}\left(x_{n}\right)=\lim _{n} f\left(x_{n}\right)=\lim _{k} f\left(x_{n_{k}}\right)$.
(8) $\left|\lim _{k} f\left(x_{n_{k}}\right)-f(x)\right| \leq\left|\lim _{k} f\left(x_{n_{k}}\right)-\lim _{k} f^{\prime}\left(x_{n_{k}}\right)\right|+\left|f^{\prime}(x)-f(x)\right| \leq 2 \alpha$.
(9) $\exists \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)=\lim _{m} f_{m}(x)=f(x)$.
(10) $\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|=\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-f(x)\right|=$ $\left|\lim _{k} f\left(x_{n_{k}}\right)-f(x)\right| \leq 2 \alpha$, and (c) is proved.

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H))
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\hat{\mathrm{d}}\left(\overline{\operatorname{co}(H)^{\mathbb{R}^{K}}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) . \tag{2}
\end{equation*}
$$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H))
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{2}
\end{equation*}
$$

(1) $\left.\hat{\mathrm{d}}\left(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}\right), C(K)\right) \leq \gamma(\operatorname{co}(H))=\gamma(H) \leq 2 \operatorname{ck}(H) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right)$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H))
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{2}
\end{equation*}
$$

(1) $\left.\hat{\mathrm{d}}\left(\overline{\operatorname{co}(H)} \overline{\mathbb{R}}^{\mathbb{R}^{K}}\right), C(K)\right) \leq \gamma(\operatorname{co}(H))=\gamma(H) \leq 2 \operatorname{ck}(H) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right)$
(2) When $H \subset \mathbb{R}^{K}$, we approximate H by some set in $C(K)$, then use (1) and 5 appears as a simple

$$
5=2 \times 2+1 .
$$

The starting point. . . our goals
 The results

References

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(H^{Z^{X}}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \mathrm{ck}(H) .
$$

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n \subset H}} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(\bar{H}^{Z^{X}}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \mathrm{ck}(H)
$$

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n \subset H}} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then, for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(\bar{H}^{Z^{X}}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \mathrm{ck}(H)
$$

For the particular case $\mathrm{ck}(H)=0$ we obtain all known results about compactness in $C_{p}(X)$ spaces.

The technicalities for $C(X)$

Definition

Let (Z, d) be a metric space, X a set and $\varepsilon \geq 0$.
(i) We say that a sequence $\left(f_{m}\right)_{m}$ in $Z^{X} \varepsilon$-interchanges limits with a sequence $\left(x_{n}\right)_{n}$ in X if whenever the limits below exist we have

$$
d\left(\lim _{n} \lim _{m} f_{m}\left(x_{n}\right), \lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right) \leq \varepsilon
$$

(ii) We say that a subset H of $Z^{X} \varepsilon$-interchanges limits with a subset A of X, if each sequence in $H \varepsilon$-interchanges limits with each sequence in A.
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\operatorname{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.
for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Proof.-

(1) Let $T: \Sigma \rightarrow 2^{X}$ be the usco map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\cup\{T(\alpha): \alpha \in \Sigma\}=X$;
for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.
The quantitative difference between NK and K
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Proof.-

(1) Let $T: \Sigma \rightarrow 2^{X}$ be the usco map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\cup\{T(\alpha): \alpha \in \Sigma\}=X$;
(2) Take $A_{\alpha}:=T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Proof.-

(1) Let $T: \Sigma \rightarrow 2^{X}$ be the usco map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\cup\{T(\alpha): \alpha \in \Sigma\}=X$;
(2) Take $A_{\alpha}:=T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
(3) For every $\alpha \in \Sigma$, every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, lies in a compact subset of X.
for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.
The quantitative difference between NK and K
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Proof.-

(1) Let $T: \Sigma \rightarrow 2^{X}$ be the usco map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\cup\{T(\alpha): \alpha \in \Sigma\}=X$;
(2) Take $A_{\alpha}:=T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
(3) For every $\alpha \in \Sigma$, every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, lies in a compact subset of X.
(4) Apply Lemma 1 to obtain that for

$$
\varepsilon:=\operatorname{ck}(H)+\hat{d}(H, C(X, Z))
$$

(ii) in Lemma 2 is satisfied.

C. Angosto and B. Cascales

The quantitative difference between NK and K
X topological space, (Z, d) a separable metric space and $H \subset\left(Z^{X}, \tau_{p}\right)$ relatively compact.

Lemma 1

If we define $\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))$, then H 2ε-interchanges limits with relatively countably compact subsets of X.

Lemma 2

(i) there is $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and a family $\left\{A_{\alpha}: \alpha \in \Sigma\right\}$ of non-void subsets of the set X such that $X=\bigcup\left\{A_{\alpha}: \alpha \in \Sigma\right\} ;$
(ii) for every $\alpha=\left(a_{1}, a_{2}, \ldots\right) \in \Sigma$ the set H ε-interchanges limits in Z with every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, where $C_{\alpha \mid m}=\bigcup\left\{A_{\beta}: \beta \in \Sigma\right.$ and $\left.\beta|m=\alpha| m\right\}$.

Then for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \leq \varepsilon
$$

for any cluster point g of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Z^{X}.

Theorem

Let X be a countably K-determined space. Then, for any $f \in \bar{H}^{Z^{X}}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Proof.-

(1) Let $T: \Sigma \rightarrow 2^{X}$ be the usco map, $\Sigma \subset \mathbb{N}^{\mathbb{N}}$, such that $\cup\{T(\alpha): \alpha \in \Sigma\}=X$;
(2) Take $A_{\alpha}:=T(\alpha)$ for every $\alpha \in \Sigma$: (i) in Lemma 2 is satisfied.
(3) For every $\alpha \in \Sigma$, every sequence $\left(x_{n}\right)_{n}$ in X that is eventually in each set $C_{\alpha \mid m}, m \in \mathbb{N}$, lies in a compact subset of X.
(4) Apply Lemma 1 to obtain that for

$$
\varepsilon:=\mathrm{ck}(H)+\hat{d}(H, C(X, Z))
$$

(ii) in Lemma 2 is satisfied.
(5) Lemma 2 finishes the proof.

The quantitative difference between NK and K

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n \subset H}} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then, for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Theorem

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(\bar{H}^{Z^{X}}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \mathrm{ck}(H)
$$

For the particular case $\mathrm{ck}(H)=0$ we obtain angelicity of $C_{p}(X)$ (Orihuela).
C. Angosto and B. Cascales

The quantitative difference between NK and K

If K is a compact convex subset of a I.c.s., $\mathscr{A}(K)$ is the space of affine functions defined on K, and $\mathscr{A}^{C}(K)=C(K) \cap \mathscr{A}(K)$.

Theorem

Let K be a compact convex subset of a l.c.s. Then for any bounded function f in $\mathscr{A}(K)$ we have

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right)
$$

Corollary

Let E be a Banach space and let $B_{E^{*}}$ be the closed unit ball in the dual E^{*} endowed with the w^{*}-topology. Let $i: E \rightarrow E^{* *}$ and $j: E^{* *} \rightarrow \ell_{\infty}\left(B_{E^{*}}\right)$ be the canonical embedding. Then, for every $x^{* *} \in E^{* *}$ we have:

$$
d\left(x^{* *}, i(E)\right)=d\left(j\left(x^{* *}\right), C\left(B_{E^{*}}\right)\right) .
$$

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

$$
\begin{gathered}
\omega(H):=\inf \left\{\varepsilon>0: H \subset K_{\varepsilon}+\varepsilon B_{E} \text { and } K_{\varepsilon} \subset X \text { is w-compact }\right\} \\
\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|:\left(f_{m}\right) \subset B_{E^{*}},\left(x_{n}\right) \subset H\right\},
\end{gathered}
$$

assuming the involved limits exist,

$$
\left.\begin{array}{rl}
\operatorname{ck}(H) & :=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}\left\{h_{n}: n>m\right\}\right. \\
w^{*}
\end{array}, E\right),
$$

where the w^{*}-closures are taken in $E^{* *}$ and the distance d is the usual inf distance for sets associated to the natural norm in $E^{* *}$.

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$
\begin{gathered}
\mathrm{ck}(H) \leq \mathrm{k}(H) \leq \gamma(H) \leq 2 \mathrm{ck}(H) \leq 2 \mathrm{k}(H) \leq 2 \omega(H), \\
\gamma(H)=\gamma(\operatorname{co}(H)) \text { and } \omega(H)=\omega(\operatorname{co}(H))
\end{gathered}
$$

For any $x^{* *} \in \bar{H}^{w^{*}}$, there is a sequence $\left(x_{n}\right)_{n}$ in H such that

$$
\left\|x^{* *}-y^{* *}\right\| \leq \gamma(H)
$$

for any cluster point $y^{* *}$ of $\left(x_{n}\right)_{n}$ in $E^{* *}$. Furthermore, H is weakly relatively compact in E if, and only if, one (equivalently all) of the numbers $\mathrm{ck}(H), \mathrm{k}(H), \gamma(H)$ and $\omega(H)$ is zero.

Remark

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From $\mathrm{k}(\mathrm{co}(H)) \leq 2 \mathrm{k}(H)$ straightforwardly follows Krein-smulyan theorem.

Corson property implies $\mathrm{k}(\cdot)=\mathrm{ck}(\cdot)$

Theorem

If E is a Banach space with Corson property \mathscr{C}, then for every bounded set $H \subset E$ we have $\mathrm{ck}(H)=\mathrm{k}(H)$.

Problem

Do we have the equality $\operatorname{ck}(\cdot)=k(\cdot)$ for every Banach space?

Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of $C(K)$. Let us define

$$
\gamma_{K}(H):=\sup \left\{\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|:\left(f_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}
$$

assuming the involved limits exist. Then we have

$$
\gamma_{K}(H) \leq \gamma(H) \leq 2 \gamma_{K}(H)
$$

Theorem (Gantmacher)

Let E and F be Banach spaces, $T: E \rightarrow F$ an operator and $T^{*}: F^{*} \rightarrow E^{*}$ its adjoint. Then

$$
\gamma\left(T\left(B_{E}\right)\right) \leq \gamma\left(T^{*}\left(B_{F^{*}}\right)\right) \leq 2 \gamma\left(T\left(B_{E}\right)\right)
$$

Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence $\left(T_{n}\right)_{n}$ of operators $T_{n}: E \rightarrow c_{0}$ such that

$$
\omega\left(T_{n}^{*}\left(B_{\ell^{1}}\right)\right)=1 \quad \text { and } \quad \omega\left(T_{n}^{* *}\left(B_{E}^{* *}\right)\right) \leq w\left(T_{n}\left(B_{E}\right)\right) \leq \frac{1}{n}
$$

Note that this example says, in particular, that there are no constants $m, M>0$ such that for any bounded operator $T: E \rightarrow F$ we have

$$
m \omega\left(T\left(B_{E}\right)\right) \leq \omega\left(T^{*}\left(B_{F^{*}}\right)\right) \leq M \omega\left(T\left(B_{E}\right)\right)
$$

Corollary

γ and ω are not equivalent measures of weak noncompactness, namely there is no $N>0$ such that for any Banach space and any bounded set $H \subset E$ we have

$$
\omega(H) \leq N \gamma(H)
$$

How to measure distances to $B_{1}(X)$?

How to measure distances to $B_{1}(X)$?

We use an index of σ-fragmentability.

How to measure distances to $B_{1}(X)$?

We use an index of σ-fragmentability.

If X topological space, (Z, d) a metric and $f \in Z^{X}$ and $\varepsilon>0$:
(1) f is ε-fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;

How to measure distances to $B_{1}(X)$?

We use an index of σ-fragmentability.

If X topological space, (Z, d) a metric and $f \in Z^{X}$ and $\varepsilon>0$:
(1) f is ε-fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;
(2) f is $\varepsilon-\sigma$-fragmented by closed sets if there is countable family of closed subsets $\left(X_{n}\right)_{n}$ that covers X such that $\left.f\right|_{X_{n}}$ is ε-fragmented for every $n \in \mathbb{N}$.

Indexes of fragmentability and σ-fragmentability

Definition

If X topological space, (Z, d) a metric and $f \in Z^{X}$. We define:

$$
\sigma \text {-frag}(f):=\inf \{\varepsilon>0: f \text { is } \varepsilon-\sigma \text {-fragmented by closed sets }\}
$$

Theorem

If X is a metric space, E a Banach space and $f \in E^{X}$ then

$$
\frac{1}{2} \sigma-\operatorname{frag}_{c}(f) \leq d\left(f, B_{1}(X, E)\right) \leq \sigma-\operatorname{frag}_{c}(f)
$$

In the particular case $E=\mathbb{R}$ we precisely have

$$
d\left(f, B_{1}(X)\right)=\frac{1}{2} \sigma-\operatorname{frag}(f)
$$

References

K. Astala and H. O. Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367-375. MR MR1027789 (91b:47016)
J. Bourgain, D. H. Fremlin, and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), no. 4, 845-886. MR 80b:54017
A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186. MR 13,857e
J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera, σ-fragmentability of multivalued maps and selection theorems, J. Funct. Anal. 117 (1993), no. 2, 243-273. MR 94m:46023
J. Orihuela, Pointwise compactness in spaces of continuous functions, J. London Math. Soc. (2) 36 (1987), no. 1, 143-152. MR 88f:46058
M. Talagrand, Espaces de Banach faiblement \mathscr{K}-analytiques, Ann. of Math. (2) 110 (1979), no. 3, 407-438. MR 81a:46021

Katetov theorem (X normal)
f_{2} l. s. convex

f_{1} u. s. concave

Hahn

